Towards -1 effective index with one-dimensional metal-dielectric metamaterial: a quantitative analysis of the role of absorption losses.
نویسندگان
چکیده
We propose a theoretical study of the optimization of one dimensional metal-dielectric metamaterials in order to approach -1 effective optical index. Taking into account actual values of dielectric constants of metal (silver) and dielectrics (HfO(2), GaP), and taking advantage of the dispersion relation of Bloch modes, we get a silver/HfO(2)metamaterial with suitable parameters that possesses a near -1 effective optical index for all angles of incidence at a visible wavelength for H-polarized light (i.e. the magnetic field is parallel to the interfaces). The absorption losses of materials appear to be a crucial factor that affects the effective properties of the metamaterial. We show that the losses not only decrease the transmission of the stack, but also change the negative refraction effect. Then, we propose another silver/GaP structure design that is less sensitive to losses. When considering finite thickness structures, and with adequate thickness for the terminating layers, it is possible to achieve a high transmittance of the structure. A near -1 effective index and high transmittance metal-dielectric metamaterial may pave the way to the realization of negative refraction in the visible or ultraviolet wavelength range.
منابع مشابه
On the dielectric function tuning of random metal-dielectric nanocomposites for metamaterial applications.
The potential of random metal-dielectric nanocomposites as constituent elements of metamaterial structures is explored. Classical effective medium theories indicate that these composites can provide a tunable negative dielectric function with small absorption losses. However, the tuning potential of real random composites is significantly lower than the one predicted by classical theories, due ...
متن کاملThree-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.
We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multila...
متن کاملA Naked Eye Refractive Index Sensor with a Visible Multiple Peak Metamaterial Absorber
We report a naked eye refractive index sensor with a visible metamaterial absorber. The visible metamaterial absorber consisting of a silver dendritic/dielectric/metal structure shows multiple absorption peaks. By incorporating a gain material (rhodamine B) into the dielectric layer, the maximal magnitude of the absorption peak can be improved by about 30%. As the metamaterial absorber is sensi...
متن کاملA Planar, Layered Ultra-wideband Metamaterial Absorber for Microwave Frequencies
In this paper, an ultra-wideband metamaterial absorber is designed and simulated. The proposed absorber is planar and low profile. It is made of a copper sheet coated with two dielectric layers. Each unit cell of the metamaterial structure is composed of multiple metallic split rings, which are patterned on the top and middle boundaries of the dielectrics. The designed absorber utilizes differe...
متن کاملCompensation of loss to approach –1 effective index by gain in metal-dielectric stacks
We propose a theoretical study of optimization of metal-dielectric multilayer in order to approach -1 effective refractive index for transverse magnetic waves and a wavelength in the visible. The absorption losses of metal appear to be a crucial factor that affects the effective properties of the multilayer. Taking advantage of the dispersion relation of Bloch modes, we show that the losses not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 15 12 شماره
صفحات -
تاریخ انتشار 2007